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An implicit type of successive approximation for the steady-state NavierStokes equa- 
tions is proposed. The method has second-order accuracy in the whole flow field and can 
avoid the divergence of the iterations. As a numerical example, the flow in a square cavity 
is calculated for Reynolds numbers 100, 200,400, 500,700, and 1000. The accuracy of the 
convective terms is improved by the present method. 

INTRODUCTION 

The Navier-Stokes equations, which are considered to govern fluid motion, are 
very difficult to solve analytically because of their nonlinearity. Up to the present 
time, many workers have tried to approximate the Navier-Stokes equations by 
difference equations and to solve them by numerical procedures. However, because 
of the nonlinearity of the Navier-Stokes equations, some difficulties have arisen in 
numerical as well as in analytical studies. One of the greatest difficulties may be the 
problem of the divergence of the iterative methods at high Reynolds numbers. In 
past studies, many workers took an extremely small relaxation factor (for example, 
see Refs. [I, 2]), or used the upstream differencing method due to Greenspan [3] or 
Runchal et al. [4]. In the former method, calculations must be continued for a long 
time to get convergent solutions. For the upstream differences the defect is that the 
accuracy of convective terms is not good. Although there are some upstream dif- 
ferencing methods in the time-dependent problem (for example, see Refs. [5,6]), they 
have only first-prder formal accuracy in the steady-state problem. There are also 
studies which introduce higher-order differences to convective terms (for example, see 
Ref. [7]). Recently, in the steady-state problem, Ozawa [8] derived a formula which 
can avoid the divergence of the solutions of the difference equations without reduction 
of the accuracy of the convective terms. His formula was derived by using Greenspan’s 
idea and by introducing the local computing time step to the steady difference equa- 
tions. 

In this paper, the steady-state problem is considered. From a viewpoint of numerical 
analysis, a new method, different from Ozawa’s, is derived. The method has second- 
order accuracy in the entire flow field and the divergence of finite-difference equations 
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can be avoided at higher Reynolds numbers. In order to test this method, the flow in a 
square cavity is calculated, which is a problem already treated by others (Kawaguti 
[9], Burggraf [2], Pan and Acrivos [IO], Greenspan [3], Runchal et al. [4], Bozeman 
and Dalton [I 11, Nallasamy and Prasad [12], Ozawa [8], and Nallasamy and Prasad 
[13]). The results of this study show the usefulness of the new method proposed here. 

FORMULATION OF A NEW DIFFERENCE EQUATION 

The Navier-Stokes equations for the two-dimensional steady flow of a viscous in- 
compressible fluid can be expressed in nondimensional form as 

a* a< a* a[ i a25 a25 -----___ ~ __ 
ay ax ax ay Re ax* + ay2 ' ( 1 (1) 

using a stream function # and a vorticity 5. This equation is expressed in convective 
form. Here, Re = UL/v is the Reynolds number, U the characteristic speed, L the 
characteristic length of the flow field, and v the kinematic viscosity of the fluid. 
Between 5 and z,$ there exists the relation, 

+g-$+$). (2) 

In general, Eq. (1) is transformed into a difference equation, using the centered space- 
differences, as 

& K$h.i+l - 9LdGtl.i - %i--l.i) - (h+1,j - vL*j)(5i.j+l - Lj-1)) 

(3) 

where h and s are the mesh sizes in x- and y-directions respectively. That is, & is 
corrected successively by 

h2s2 
5i.i = 2(h2 + s2) ( 

<j+l,j + 5i-l,j + i&j+1 + L.i-1 
h2 s2 ) 

hsRe + 8(h2 + s2) {45i.j+l - iid-1) - 8(5i+l,j - ii-l.j))7 (4) 

where CII = $i+l,j - $i-l,j and /3 = $6,5+1 - #i,j-1 . One may use either the Jacobi 
or Gauss-Seidel form of Eq. (4) [ 171. However, as is well known, the iterative solution 
of <i,j by Eq. (4) often diverges at higher Reynolds numbers. The upstream differen- 
cing method could be introducing to avoid the divergence of the solution. However, 
since the upstream differenceing method contains first-order approximations in the 
left-hand side of Eq. (I), a false viscosity effect appears in the solution. With the 
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finite mesh size used, it is very doubtful that the method is an accurate approximation 
to Eq. (1) because of the different order of approximations in both sides of Eq. (1). 
Thus, the meaning of Eq. (3) must be reconsidered. 

It is desirable to modify Eq. (4) to make it diagonally dominant while keeping the 
second-order accuracy. To this end, Eq. (3) is written as 

zz- de ]$ij- tii+l,i + Ll,j - 25i,j) + f (LA+1 + Lj-1 - 24. (5) 

Next, interpreting Eq. (3) as a successive process to the difference solution of Eq. (l), 
we distinguish between the kth and (k + 1) st approximates of the terms of <r,j, 
denoting them as i$fi and l$l), respectively. Then, Eq. (5) in Gauss-Seidel form 
becomes 

Note that this equation denotes a new implicit type of successive approximation. In 
this equation, if 01 = *i+l,j - $i-l,j 3 0 and p = #i,i+l - $QJ-~ > 0, for example, 
then the signs of the first two terms, cjF$‘) and c$, should be chosen + and -, 
respectively, and the signs of the next two terms {jl”,“’ and # should be chosen - and 
+, respectively. In other words, the signs should be chosen so that the coefficient of 
~~~~l) of the following Eq. (6) becomes as large as possible. Thus, 

Hence, from a viewpoint of numerical analysis, a new method is derived. In the present 
method, if the necessary condition for convergence 

( gy) - [,!fci’ 1 + 0 (7) 

is satisfied, the truncation errors of Eq. (6) become 0(S2) (6 = max(h, 8)). Further- 
more, since the terms which involve the Reynolds number as a multiplier appear on 
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both sides of Eq. (6), the correction of c$+” is smaller than that of Eq. (4) at higher 
Reynolds numbers. Hence, the divergence of difference equations can be avoided at 
higher Reynolds numbers. This form of calculation is rather simple compared with 
those of Greenspan [3] or Runchal et al. [4]. The only essential weak point of this 
method is that it is necessary to check the value of 

Res = ReK 01 I + I B I) I if?’ - Ci’f”) lImrtx/4 (8) 

to determine the accuracy of the difference equation. If this value is large, the conver- 
gent solution is not an accurate second-order approximation to Eq. (1). However, 
this value is small enough as will be shown later for the cavity flow problem. 

Note that the difference between Eq. (6) and SOR [17] is that Eq. (6) has Re 
(1 01 j + I p /)/4 in two places where SOR would have 2(1 - w)(? + h2)/(hsw). Thus, 
Eq. (6) may be viewed as an SOR method with variable w. 

NUMERICAL EXAMPLE 

As a numerical example, the steady flow in a two-dimensional square cavity is 
considered (see Fig. 1). This prototype problem was first discussed by Kawaguti [9], 
and later by many others (see Refs. [2-4, 8, 10-131). The coordinates of the mesh 
points (i,,j) are ((i - 1) h, (j - 1) h), and a uniform square mesh of side h is used. 
Calculations are made using three methods, viz., Kawaguti’s method [9] (put h = s in 
Eq. (4)) Greenspan’s method [3], and the method proposed in this paper (put h = s 
in Eq. (6)). 

In Kawaguti’s method, the difference equation for ci,j is 

(9) 

FIG. 1. Cavity flow problem. 
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According to Greenspan’s method, the difference equation is 

(4 + UWXI 01 I + ! P IN i& 

According to the present method, the difference equation is 

(4 + GWM a I + I P IN Gj 
= p + <!!+I! + <!“! + [!“:“’ 2+1,3 z 1,3 2,3+1 2.3 1 

+ (W4){45tL - GIe,+_ll) - S(ll2l.j - li’Z$ + (I 01 I + I B I> t;lf$i. 

The stream function is corrected by 

Equation (12) is common to the three methods. Relaxation factors are introduced as 
follows: 

p+l) = p + w  (CT. - @“!) 1,3 1.3 z %,3 2.3 9 

where w, is the relaxation factor for 5, and 

(13) 

,jrcj+l) = &rcj’ + co&/& - #i’i”i’), (14) 

where wg is the relaxation factor for I/J. In this study, the relaxation factors w, and wD 
are both put equal to 1 in order to see the nature of Eq. (11). The boundary conditions 
are 

$ = 0, a*/ax = 0 on AB; 

* = 0, a$jay = 0 on BC; 

# = 0, +/ax = 0 on CD; 

4 = 0, agjay = -I on DA. 

These equations can be expressed as difference equations by 

3Ll.i = 09 S1.i = --2hlh2 for 2 <j <,jc - 1; 

*i.1 = 0, Si.1 = --2hlh2 for 2 < i < ic - 1; 

hi = 0, SW = --2&c-Ah2 
(16) 

for 2 <,j<jc- 1; 

1Ci.ie = 0, Si,je = -2($i,j,-1 - h)/h2 for 2 -.< i .< ic - I. 
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Numerical integrations of Eqs. (1) and (2) are carried out by iterative procedures 
according to the following steps: 

(1) Initial values of {i,r and #i,j are assumed at all mesh points. 

(2) Calculate the values of vorticity on the boundary by Eq. (16). 

(3) Successively calculate for every i from i = 2 to ic - 1. 

(i) Correct the values of vorticity and stream function at the inner points from 
j=2tojc-lforfixedi(ic=jc). 

(ii) Correct [i,i (by Eq. (13)). 

(iii) Correct #I,j (by Eq. (14)). 

(4) Except for all points ci,, = #i,j = 0, Iuirj -f$-‘))ifjrj jmax < E cf 3 5 
or $) is calculated, and if this relation is satisfied (E = 10-5), then the iteration is 
terminated, k being the number of iterations. If this relation is not satisfied, then 
return to the step (2). 

RESULTS AND DISCUSSIONS 

First of all, calculations are performed under the conditions that all initial values of 
J& and #t,j are equal to zero at all mesh points for every method and the relaxation 
factors are taken as w, = ol, = 1 in Eqs. (13) and (14). The number of iterations of 
these calculations is shown in Table I. In this table, a dash indicates that the calcula- 
tion was not attempted, and “div.” indicates that the solution of difference equations 
has diverged. If at least one value of & or #i,j has become larger than 106, then the 

TABLE I 

Comparison of the Number of Iterations by Various Methods (c = 1O-6) 

Reynolds number 

Method Mesh size h 100 200 400 500 700 loo0 

Kawaguti 

Greenspan 

Present 

l/l0 146 div. 
l/20 441 div. 
l/40 1984 2218 

l/l0 139 129 
1120 460 440 
l/40 2096 1773 

l/IO 148 130 
l/20 467 472 
l/40 1984 2091 
l/60 - - 

- - - - 
div. div. - - 

- - - - 
566 537 619 625 

2499 2538 4455 6350 

- - - - 
1291 2328 572 oscil. 
2572 3057 3370 4438 

- 2931 3265 3562 
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solution of the difference equations has been regarded as diverged. And “oscil.” 
denotes that the solution of the difference equations has oscillated. In this case, a more 
detailed examination showed that 1 {$ - [jr;” lmax was of the order of 10 after 50 
and 100 iterations, and this did not change after 500 and 1000 iterations. 

For h = l/60, initial values are set equal to zero at all mesh points, but the relaxa- 
tion factors w, = 1.0 and wz, = 1.7 are taken. Lastly, a finer mesh size (h = l/100) is 
taken at Re = 1000. In this case, the solution of Kawaguti’s method for h = l/50 at 
Re = 100 is used as the initial values for 5i.j and zJ~,~ , and the relaxation factors w, = 
1.0 and oD = 1.7 are taken. Under these conditions, 8000 iterations are performed 
until E becomes 1.792 x 10-4. 

The necessary CPU times are 0.430 (set/iteration) by Kawaguti’s method, 0.592 by 
Greenspan’s method, and 0.444 by the present method, at Re = 100 and for 
h = l/40. 

Figures 2a-e and Fig. 3 show the typical results of stream functions and vorticity. 
Figure 2a shows the streamlines at Re = 200 for h = l/40 by the present method. The 
maximum value of #i,j is 0.1032 and is expressed as $J,, in the legends of this figure. 
(x,, , vuc) denotes the coordinate of #,, , and c,, is the value of &j at (x,, , ~,J. 
These values are defined at mesh points but not interpolated. The results of the exact 
second-order method (Kawaguti’s method) coincide with the results of the present 
method in all cases where both converge. At Re = 200, h = l/40, tJVc = 0.1013, 
<,, = 2.841, and (x,, , vvc) = (0.375,0.725) are the values obtained by Greenspan’s 
method. From the result, we could say the following. At this Reynolds number, the 
false viscosity effect in Greenspan’s method does not influence the flow field as much. 
Torrance [14] already pointed out the fact that, at lower Reynolds numbers, dif- 
ferent finite-difference equations give similar results. Figures 2b and c show the 
streamlines by the present method at Re = 400 and 700 for h = l/40 and l/60, 
respectively. In Greenspan’s method, at Re = 400, #,, = 0.0939, cut = 2.448, and 
(x,~ , vuc) = (0.375,0.700) are obtained for h = l/40, and at Re = 700, z,b,, = 0.0819, 
<,, = 2.274, and (x,, , JJ,,) = (0.375,0.700) for h = l/40. (The values which are 
shown in the legend of Fig. 2c are all using h = l/60; for h = l/40, they are #J,~ = 
0.0938, c,, = 1.827, and (x,, , uVe) = (0.450. 0.600) in the present method.) Thus, as 
the Reynolds number becomes large, there appear differences between the solutions 
of Greenspan’s method and the present method, and Kawaguti’s method diverges 
(see Table I). Figure 2d shows a more realistic solution with the present method for 
h = l/40 at Re = 1000. At Re = 1000, the false viscosity effect appeared in the 
solution with Greenspan’s method for h = l/40, and an unrealistic solution was 
obtained with the present method for h = l/20 (0, = 0.8, wg = 1.0). Figure 2e 
shows the most accurate solution (h = l/100) at Re = 1000. We can see the second 
separated streamline (L, = 0.0141, L, = 0.0140) like Moffatt’s flow in the figure. 

For h = l/40 and l/l00 at Re = 1000, the values of the local convergence Res 
(see Eq. (8)) are 4.56 x 1O-6 and 6.079 x 10-6, respectively. The present difference 
equation is reduced to a system of algebraic equations 
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d 

FIG. 2. Streamlines. (a) Re = 200, h = l/40, present method. (&, y,J = (0.400, 0.675) 
#,, = 0.1032, C,, = 2.609, L = 0.2102, I+ = 0.2702. (b) Re = 400, h = 1,‘40, present method. 
(x,~,Y,,) = (0.425, 0.625), $,, = 0.1012, L, = 2.143, L, = 0.2752, L, = 0.3364. (c) Re = 700, 
h = l/60, present method. (x, , yd = (0.450, 0.583), &,c = 0.1067, L,, = 1.989, Lm = 0.2934, 
Ly = 0.3557. (d) Re = 1000, h = l/40, present method. (xoc , yvc> = (0.450, 0.600), A, = 0.0852, 
L. = 1.614, L = 0.3294, L, = 0.3873. (e) Re = 1000, h = l/100, present method. (x,~ , yJ = 
(0.470, 0.570), &se = 0.1133, c,, = 1.988, Ls = 0.3040, L, = 0.3672. 
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where the coefficients of the matrix A depend on the stream function, i.e., A = A($). 
The stream function is obtained from Eq, (2). Thus, the global convergence of the 
iterative solution to Eq. (1) is checked by 

IW - YM Y I . 

For h = l/40 and l/100 at Re = 1000, the values of the global convergence are both 
@lo-‘). So, the present scheme of calculation is considered an exact second-order 
approximation to Eqs. (1) and (2). (With the present method, the values of the local 
and global convergence were 0( 1O-s) N 0( lo-‘) in all cases.) 

Figure 3 shows the typical equivorticity lines at Re = 1000. As Burggraf [2] already 
stated, convective terms have begun to dominate the flow, producing a core of nearly 
uniform vorticity at the higher Reynolds number (see Batchelor [ 151). The coordinates 
of the separation point L, are compared with experimental results in Fig. 4. It is 
shown that the calculated size of upstream corner vortex (present method) becomes 
large or remain nearly constant as the Reynolds number becomes large. Ozawa’s 
numerical results [8] shows the same tendency, but they are not shown in the figure. 

FIG. 3. Vorticity, Re = 1000, h = l/100, present method. 
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Fro. 4. Size of the upstream comer vortex of a square cavity vs Reynolds number. Experimental 
results: $, Pan and Acrivos [lo]. Numerical results: l , Burggraf [2]; q , Nallasamy and Prasad [13]; 
x, h = l/40, present method; +, h = l/60, present method; 0, h = l/100, present method. 
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This tendency is also different from those of experimental results by Pan and Acrivos 
[lo] and numerical results by Nallasamy and Prasad [ 131 or Bozeman and Dalton [ Ill. 
The discrepancies between these results are due to the following reasons. In the 
experimental results by Pan and Acrivos [IO], fluid is driven by a rotating wheel on 
the top of a cavity. This means that the boundary conditions (15) are not realized 
correctly because of the curvature of the wheel. Then the results at higher Reynolds 
numbers are considered incorrect. The numerical results of Nallasamy and Prasad [13] 
and Bozeman and Dalton [ll] were derived by the upstream differencing equation, 
the former being equivalent to Eq. (10) and the latter being a divergence form from 
Eq. (1). However, at the higher Reynolds number, the flow pattern is strongly domi- 
nated by the accuracy of the convective term. Thus, the results presented here are con- 
sidered to be closer to the exact solution than those of [l 1, 131 even when the mesh 
size is l/40. 

Figure 5 shows the effect of the Reynolds number, the mesh size, and the accuracy 
of the difference equation on the location of the vortex center. From the figure, it is 
also found that the accuracy of finite-difference equation plays an important role 
for large Reynolds number and the mesh size has a strong influence on the location of 
the vortex center as well as on the entire flow field. As the Reynolds number becomes 
large, it seems that the vortex center does not approach the geometric center of the 
square cavity because of the growth of the second (or the third) eddy in the bottom of 
the cavity. 

From the table and figures, we conclude the following. The proposed method in 
this paper is capable of avoiding the divergence of difference solutions, and the trun- 
cation errors of both sides of Eq. (1) become 0(G) (6 = max(h, s)) when the solution 
has converged. Furthermore, the number of iterations of the present method is not 
too different from those of other methods. Figure 6 shows the velocity distribution in 
the x-direction on the vertical center line of the square cavity for some Reynolds 

FIG. 5. Center of the center vortex: effect of Reynolds number, mesh size and accuracy of the 
difference equation. A, h = l/10, Present method; +; h = l/40, present method; ?=, h = lUO0, 
present method; 0, b = l/10, Greenspan’s method; l , h = l/40, Greenspan’s method. 

581/36/2-S 
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FIG. 6. Velocity profiles on vertical center line of a square cavity. 

numbers. From the figure, we can see that the velocity gradient becomes more abrupt 
in the neighborhood of the sliding edge as the Reynolds number becomes large. This 
fact suggests the development of the boundary layer near the sliding edge. 

CONCLUSIONS 

From the viewpoint of numerical analysis, a new finite-difference approximation 
to the Navier-Stokes equations is derived. Using this method, some numerical 
experiments are performed. As a result of this study, we conclude the following: 

(1) The new method proposed in this paper is useful in avoiding the divergence 
of the iterative method, and when the difference solutions have converged, the order 
of approximation is of 0(S2) (6: maximum mesh size) in the entire flow field. 

(2) The equation to calculate vorticity is rather simple compared with that of 
Greenspan or Runchal et al. 

APPENDIX: SOME REMARKS ON THIS METHOD 

With the proposed method of successive approximation, the accuracy of the con- 
vective terms, which was the defect of the methods of Greenspan [3] and Runchal et 
al. [4], is improved. Recently, Ozawa [S] has derived a finite-difference equation 
which is different from the one proposed here. Ozawa has succeeded in obtaining an 
effect similar to that found in this paper. We examine the difference between these two 
methods. For simplicity, o, = 1 is taken, and rewriting Eq. (11) formally, we have 
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Writing this in a generalized form gives 

In this expression, h and p are considered constants, although they would be 
considered functions of k in general. We rewrite Eq. (Al) as 

where At = A + @e/pNI 01 I + I B I), and with h = 4 and p = 2. This expression is 
very similar to that of Ozawa [8], but the iteration is done differently. 

Next, we rewrite Eq. (Al) as 

To examine the numerical stability of Eq. (A3), we apply Wilkinson’s method [16] 
Wilkinson has shown that the Gaussian elimination for the diagonally dominant and 
tridiagonal coefficient matrix is extremely stable with respect to the growth of rounding 
errors. Equation (A3) can be rewritten as a matrix form, of which diagonal sub- 
matrices are tridiagonal. The components of the tridiagonal matrix are, for example, 

- (1 - 9 a), h+$%! + IpI>, -(l +?a). 

Thus, it is easily seen that there is no loss of the diagonal dominance for the larger h 
and the smaller p. So, the iterative method is more stable for the larger h and the 
smaller p. On the other hand, the left-hand side of Eq. (Al) denotes the remaining 
error of the Navier-Stokes equations with central-difference approximation. There- 
fore, if <i:p) - ciic) does not depend on the selection of parameters X and p, the choice 
of the larger h and the smaller t.~ causes the number of iterations needed to converge to 
increase because of the magnitude of the remaining error. However, in actual cal- 
culations, Cjfcf” - cj:j is a function of X, p, and k. At present, the optimum values of 
A and p are unknown. The selection of h and ,u should be based upon the numerical 
stability and the asymptotic rate of convergence (see, for example, Ref. [17]), etc. 
The selection of h = p = 4 in this paper is thought to be reasonable. 
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